

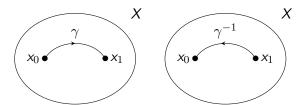
Lecture 2: Fundamental Groupoid

Path connected components

Definition

Let $X \in \mathbf{Top}$.

- ▶ A map $\gamma: I \to X$ is called a path from $\gamma(0)$ to $\gamma(1)$.
- ▶ We denote γ^{-1} be the path from $\gamma(1)$ to $\gamma(0)$ defined by $\gamma^{-1}(t) = \gamma(1-t)$
- ▶ We denote $i_{x_0}: I \to X$ be the constant map to $x_0 \in X$.



 \boxtimes : A path γ in a topological space X and its inverse

Let us introduce an equivalence relation on X by

$$x_0 \sim x_1 \Longleftrightarrow \exists$$
 a path from x_0 to x_1 .

We denote the quotient space

$$\pi_0(X) = X/\sim$$

which is the set of path connected components of X.

Theorem

 $\pi_0 \colon \mathbf{hTop} \to \mathbf{\underline{Set}}$ defines a covariant functor.

Corollary

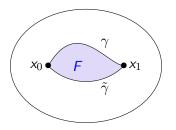
If X, Y are homotopy equivalent, then $\pi_0(X) \simeq \pi_0(Y)$.

Path category / fundamental groupoid

Definition

Let $\gamma:I\to X$ be a path. We define the path class of γ by

$$[\gamma] = \{ \tilde{\gamma} : I \to X | \gamma \simeq \tilde{\gamma} \operatorname{rel} \partial I = \{0, 1\} \}.$$



 ${\bf S}$: In a path class, $F: \gamma \simeq \tilde{\gamma} \ {\rm rel} \, \partial I$

 $[\gamma]$ is the class of all paths that can be continuously deformed to γ while fixing the endpoints.

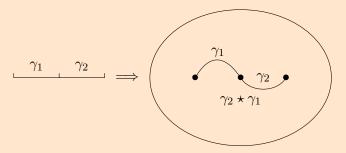
Definition

Let $\gamma_1, \gamma_2: I \to X$ such that $\gamma_1(1) = \gamma_2(0)$. We define the composite path

$$\gamma_2 \star \gamma_1: I \to X$$

by

$$\gamma_2 \star \gamma_1(t) = \begin{cases} \gamma_1(2t) & 0 \le t \le 1/2 \\ \gamma_2(2t-1) & 1/2 \le t \le 1, \end{cases}$$



Composition of paths

Proposition

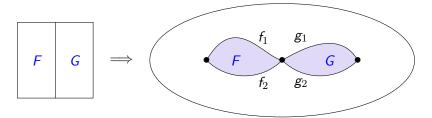
Let f_1, f_2, g_1, g_2 be paths, such that $f_i(1) = g_i(0)$, $[f_1] = [f_2]$, $[g_1] = [g_2]$. Then

$$[g_1\star f_1]=[g_2\star f_2].$$

Therefore \star is well-defined for path classes.

Proof.

We illustrate the proof as follows



Proposition (Associativity)

Let $f, g, h: I \to X$ with f(1) = g(0) and g(1) = h(0). Then

$$([h] \star [g]) \star [f] = [h] \star ([g] \star [f]).$$

Proof.

We illustrate the proof as follows

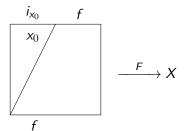
Proposition

Let $f: I \to X$ with endpoints $f(0) = x_0$ and $f(1) = x_1$. Then

$$[f] \star [i_{x_0}] = [f] = [i_{x_1}] \star [f].$$

Proof.

We only show the first equality, which follows from the figure



Definition

Let $X \in \underline{\mathbf{Top}}$. We define a category $\Pi_1(X)$ as follows:

- ▶ $\operatorname{Hom}_{\Pi_1(X)}(x_0, x_1) = \operatorname{path}$ classes from x_0 to x_1 .
- $ightharpoonup 1_{x_0} = i_{x_0}.$

The propositions above imply $\Pi_1(X)$ is a well-defined category. $\Pi_1(X)$ is called the path category or fundamental groupoid of X.

Groupoid

Definition

A category where all morphisms are isomorphisms is called a groupoid. All groupoids form a category **Groupoid**.

Example

A group G can be regard as a groupoid \underline{G} with

- ▶ $Obj(\underline{G}) = \{\star\}$ consists of a single object.
- ▶ $\operatorname{Hom}_{\underline{G}}(\star, \star) = G$ and composition is group multiplication.

Thus we have a fully faithful functor $Group \rightarrow Groupoid$.

Theorem

Let $\gamma \colon I \to X$ with endpoints $\gamma(0) = x_0$ and $\gamma(1) = x_1$. Then

$$[\gamma] \star [\gamma^{-1}] = [1_{x_1}], \text{ and } [\gamma^{-1}] \star [\gamma] = [1_{x_0}].$$

Therefore $\Pi_1(X)$ is a groupoid.

Proof.

Let $\gamma_u \colon I \to X$ such that $\gamma_u(t) = \gamma(tu)$. The following figure gives the homotopy $\gamma^{-1} \star \gamma \simeq 1_{x_0}$:

Definition

Let $\mathcal C$ be a groupoid. Let $A\in \mathrm{Obj}(\mathcal C)$, we define its automorphism group by

$$\operatorname{Aut}_{\mathcal{C}}(A) := \operatorname{Hom}_{\mathcal{C}}(A, A).$$

Note that this indeed forms a group.

$$\operatorname{Aut}_{\mathcal{C}}(A) = \left\{ \ \, \stackrel{\smile}{\subset} \ \, A \ \, \right\}$$

For any $f: A \rightarrow B$, it induces a group isomorphism

$$\mathrm{Ad}_f \colon \mathrm{Aut}_\mathcal{C}(A) \to \mathrm{Aut}_\mathcal{C}(B)$$

 $g \to f \circ g \circ f^{-1}.$

Here is a figure to iillustrate

$$\mathrm{Ad}_f\colon\mathsf{maps}\quad \mathscr{g}\colongrel{order} A \quad\mathsf{to}\quad \mathscr{g}\colongrel{order} A \xrightarrow{f} B$$

This naturally defines a functor

$$\mathcal{C} o \underline{\mathbf{Group}}$$
 by assigning $A \mapsto \mathrm{Aut}_{\mathcal{C}}(A)$, $f \mapsto \mathrm{Ad}_f$.

Specialize this to topological spaces, we find a functor

$$\Pi_1(X) \to \underline{\mathbf{Group}}$$
.

Definition

Let $x_0 \in X$, the group

$$\pi_1(X, \mathsf{x}_0) := \mathrm{Aut}_{\Pi_1(X)}(\mathsf{x}_0)$$

is called the fundamental group of the pointed space (X, x_0) .

Theorem

Let X be path connected. Then for $x_0, x_1 \in X$, we have a group isomorphism

$$\pi_1(X,x_0)\simeq \pi_1(X,x_1).$$

Proof.

Consider the functor $\Pi_1(X) \to \underline{\mathbf{Group}}$ described above. Since X is path connected and $\Pi_1(X)$ is a groupoid, any two points x_0 and x_1 are isomorphic in $\Pi_1(X)$. Since functors preserves isomorphism, we conclude $\pi_1(X,x_0) \simeq \pi_1(X,x_1)$.

In the path connected case, we will simply denote by $\pi_1(X)$ the fundamental group without mentioning the reference point.

Let $f: X \to Y$ be a continuous map. It defines a functor

$$\Pi_1(f):\Pi_1(X)\to\Pi_1(Y)$$
 by assigning $x\mapsto f(x),\quad [\gamma]\mapsto [f\circ\gamma].$

Proposition

 Π_1 defines a functor

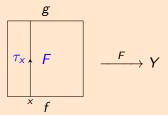
$$\Pi_1: \underline{\mathbf{Top}} o \underline{\mathbf{Groupoid}}$$

that sends X to $\Pi_1(X)$.

Proposition

Let $f, g: X \to Y$ be maps which are homotopic by $F: X \times I \to Y$. Let us define path classes

$$\tau_{\mathsf{x}} = [F|_{\mathsf{x} \times \mathsf{I}}] \in \mathrm{Hom}_{\Pi_1(\mathsf{Y})}(f(\mathsf{x}), g(\mathsf{x})),$$



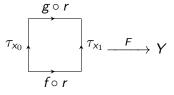
Then τ defines a natural transformation

$$\tau_F : \Pi_1(f) \Longrightarrow \Pi_1(g).$$

Let $r: I \to X$ with $r(t) = x_t$. We only need to show that the following diagram is commutative at the level of path classes:

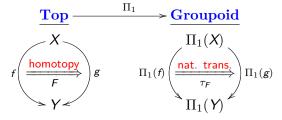
$$\begin{array}{cccc} f(x_0) = & & \Pi_1(f)(x_0) \xrightarrow{\text{for}} \Pi_1(f)(x_1) & = f(x_1) \\ & & \downarrow^{\tau_{x_0}} & & \downarrow^{\tau_{x_1}} \\ g(x_0) = & & \Pi_1(g)(x_0) \xrightarrow{g \circ r} \Pi_1(g)(x_1) & = g(x_1) \end{array}$$

The composition $F \circ (r \times I)$ gives the following diagram:



which implies that $[g \circ r] \star [\tau_{x_0}] = [\tau_{x_1}] \star [f \circ r]$ as required.

This proposition can be pictured by the following diagram



The following theorem is a formal consequence of the above proposition

Theorem

Let $f: X \to Y$ be a homotopy equivalence. Then

$$\Pi_1(\mathit{f}):\Pi_1(\mathit{X})\to\Pi_1(\mathit{Y})$$

is an equivalence of categories. In particular, it induces a group isomorphism

$$\pi_1(X, x_0) \simeq \pi_1(Y, f(x_0)),$$

Proof.

Let $g: Y \to X$ represent the inverse of f in $\underline{\mathbf{hTop}}$. Applying Π_1 to $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$, we find $\Pi_1(f) \circ \overline{\Pi_1(g)}$ and $\Pi_1(g) \circ \Pi_1(f)$ are natural isomorphic to identity functors. Thus the first statement follows.

The second statement follows from the fact that equivalence functors are fully faithful.

Proposition

Let $X, Y \in \underline{\mathbf{Top}}$. Then we have an isomorphism of categories

$$\Pi_1(X \times Y) \cong \Pi_1(X) \times \Pi_1(Y).$$

In particular, for any $x_0 \in X$, $y_0 \in Y$, we have a group isomorphism

$$\pi_1(X \times Y, x_0 \times y_0) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Example

For a point X= pt, $\pi_1($ pt)=0 is trivial. It is not hard to see that \mathbb{R}^n is homotopy equivalent to a point. It follows that

$$\pi_1(\mathbb{R}^n) = 0 \quad n \ge 0.$$

Example

As we will see,

$$\pi_1(S^1) = \mathbb{Z}, \quad \text{and} \quad \pi_1(S^n) = 0, \forall n > 1.$$

Let $T^n = (S^1)^n$ be the *n*-dim torus. Then

$$\pi_1(T^n)=\mathbb{Z}^n.$$

Example (Braid groups)

Artin's braid group Br_n of n strings has the finite presentation:

$$\mathrm{Br}_{n} = \langle b_1, \ldots, b_{n-1} \mid b_i b_j b_i = b_j b_i b_j \quad \forall |j-i| = 1, \\ b_j b_i = b_i b_j \quad \forall |j-i| > 1 \rangle.$$

Braid groups can be realized as fundamental groups.

The $n^{\rm th}$ (ordered) configuration space of X is

$$Conf_n(X) \colon = \{ \underline{x} = (x_1, \dots, x_n) \in X^n \mid x_i \neq x_j, \ \forall i \neq j \}.$$

It carries a natural action of the permutation group S_n

$$S_n \times \operatorname{Conf}_n(X) \longrightarrow \operatorname{Conf}_n(X)$$

 $(\sigma, \underline{x}) \longmapsto \sigma(\underline{x}) = (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$

The unordered configuration space of X is the orbit space :

$$\operatorname{conf}_n(X) = \operatorname{Conf}_n(X)/S_n.$$

A classical result says

$$\operatorname{Br}_n \cong \pi_1(\operatorname{conf}_n(\mathbb{R}^2)) \cong \pi_1(\operatorname{conf}_n(D^2)).$$

Fix n distinct points Z_1,\cdots,Z_n in \mathbb{R}^2 . A geometric braid is an n-tuple $\Psi=(\psi_1,\ldots,\psi_n)$ of paths

$$\psi_i \colon [0,1] \to \mathbb{R}^2$$

such that

- $\qquad \qquad \psi_i(0) = Z_i;$
- $\psi_i(1) = Z_{\nu(i)}$ for some permutation ν of $\{1, \ldots, n\}$;
- $\{\psi_1(t), \dots, \psi_n(t)\}$ are distinct points in \mathbb{R}^2 , for 0 < t < 1.

The product of geometric braids follows the same way of products of paths (in the fundamental group setting). All braids on \mathbb{R}^2 with the product above form the braid group.

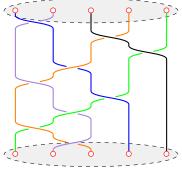


图: Classical braids